SONIC GAS FLOW AROUND A NONSYMMETRIC PROFILE

S. T. Lichuk and A. A. Orel UDC 533.6.011

A particular solution of the transonic equations describing two-dimensional flow of
an ideal gas is obtained for nonsymmetric flow around a certain profile. The aero-
dynamic characteristics of the profile are determined.

In the plane of the velocity hodograph, transonic flow of a gas is described by the
Tricomi equation

noMp/002 + 9plon® = 0 , (1)
for the stream function ¥(8, n). In the above equation, 8 is the slope of the velocity vector
with respect to the flow direction at infinity, and n is the velocity modulus function, intro-
duced by F. I. Frankl' [1], which is either positive or negative for subsonic or supersonic
velocities, respectively. We use the following linear combination of self-similar solutions
as the solution of Eq. (1):

PO, M) = 16, M) + cx$a(8, M) + cxhs(8, M) + e = - (2)
= €107 _gs5(t) + €20™%f175(8) + €30 [gs5(t) + €4y
where
f-s3(t) = 9-1(3/2)13[(1 — )31 + 3t) — (1 + )31 — 3l
) = B2)'A1(1 — t)'/* — (1 + )2);
Foora(t) = —32B2)21(1 — t)'° + (1 + O3], p*= 674 (4/9)n?,
t = 0/p.

Here c¢;, cz, and cs are arbitrary constants. The constant c, is determined below. The first
two solutions in (2) were investigated in [1, 2]; they describe the gas flow for Me = 1 at a
point remote from the solid and in the neighborhood of the Laval nozzle's center, respectively.
The third solution, in combination with the first, describes the flow behavior in approaching
infinity for nonsymmetric flow around the profile. In order to determine the shape of the
solid in the flow plane, we must find the zero streamline in the hodograph plane and then
calculate the x coordinates for it. The shape of the circumfluous profile is then obtained

by integrating with respect to x the slope of the zero streamline. We use the differential
relationship of the stream function

10, M) = (0, 1)/6, (8, n) = (6, /00 )

and the cubic function [3], which is satisfied by the stream functiom ¥.(8, n):

3 + 3, + 30 = 0. (&)

By differentiating (4) with respect to 6 and using relationship (3), we obtain

By (0, 1) = — 20 (03 + 1) g (O, W) = — (i +n). (5)
We substitute (5) in (2) and set equal to zero the obtained expression
by [a — (8 + )] [a® + (3 +n) + (8 -+ n)] + 6)

+ (43 + ) [esles — (g + m)] =0,
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_ where a® = 2c;/c2 and b = ca/ca. If we now put in (6)

esley = a = (2¢,/c,)1/3, (7)

we obtain from (6) and (4) the implicit equation of the contour of the nonsymmetric profile
in parametric form in the hodograph plane:

a2(3bp, +1) =0, 0=—3""p,(a+2n), Vi+n=a. (8)

The parameter in (8) is the function ¢2(8, n). Expression (7) defines the constant c, in
terms of the arbitrary constants ci, cz2, and cs. By solving simultaneously Egs. (8), we
find the coordinates of the leading point B of the profile in the hodograph plane,

np = a — 1/(96%), 05 = [3a — 2/(962)1/(9b). (9)

For passage to the flow plane, we use the transonic relationship [4] = = (= + )90, M) and
then represent the x coordinate of the zero streamline in the following form:

(® + 1)"Y32 = ¢,0,(6, n) + ¢.04(0, M) + c395(6, ). (10)
The velocity potential @,(0,m)of the self-similar solution is related to the function falt)
by the expression [4]
@n (B, ) = pPHU3g, (£) = (3/2)43 pnH1/s (1 — 123)28 £, (1)/(n + 1/3),

by means of which we find

e @) = (g —n) (W2 +m)7° @0, m) = — 27 (3 + 2n), 1)

@3 (8, m) = o (v3 +1)7" :
By substituting (11) in (10) and considering the equation %3 + n = a from (8), we obtain
the relationship

z = (% + 1)"3%,[—(3/2m % ca—(a — n)2], (12)

where ¢ = c¢s/c2, while the plus and minus signs pertain to the lower and upper parts of the
nonsymmetric profile, respectively. Equation (12) indicates that the velocity is distributed
nonlinearly over the profile's surface. We find the shape of the circumfluous body in the
flow plane by calculating the integral

.
y(2) = | 8dz. (13)

As a result of calculating integral (13), we obtain the following parametric equation of the
upper and lower parts of the nonsymmetric profile in terms of physical variables:

(% + 1)~/ — F(2I5)esle — M¥* + (Ba)en? & eaa — W)Y+ (14)
-+ 3-ten — (2/3)ace,
(% 4 1)"3z = ¢,]—(3/2n F ca—Ya — n)/*L.
After eliminating the parameter n in (14), we write the equation of the nonsymmetric profile
in explicit form:
(2 + 7y () = F 4 (150) " [0 + 205 (2, + @) + a P + (15)
+ g [asz + 20, (3, + @)V + 202] £ 2 (3a) M aayx + 2a5 (2, + ayz)2 +

4 a,]%2 — aay [a,7 + 205 (@, + @212 + 205] — a;,

where a,=2(@e)Y, ay=(x + 1) a;, a5=0Ba)"'¢, ay=0+0¢ and g=a+ 205, a5 =2-37ac ©

Assuming that c¢s = c4 = 0 in (15), we obtain the contour equation for Guderley's symmetric
profile [4]
y(x) = 5 + 1)"%cy(asr a)3/%(3a — 2a,7). (16)
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For convenience in constructing the nonsymmetric profile in the hodograph plane and the physi-
cal plane, we put

0120231,03=C4=2b17ll72=f,z=]‘2+"1- a7)

Figure 1 shows the flow hodograph, plotted for the cases b; = 03 —0.1. It should be noted
that the shape of the circumfluous profile in the hodograph plane does not depend on the b,
parameter. At the same time, for different b, values, the zero streamline AB arrives at
different points of the profile, determined by (9). If the thus obtained contour is con-
gidered as the region boundary for the Tricomi problem and the boundary condition y = 0, then,
as is known [5], the problem is correct in the region bounded by the ABCD contour and the line
AD and, correspondingly, in the ABC,D,A region. The curves AD and AD,; of Eq. (1) start at
the profile and arrive at the point A corresponding to infinity in the flow plane, so that

the flow disturbances introduced by the part of the profile located aft of the points D and
D, do not affect the flow in the AD,;C,BCDA region. Consequently, the profile aft of the
points D and D, can be assigned arbitrarily without altering the flow in the region up to

the limiting curves AD and AD;. It should be noted here that, along the AD and AD, curves,
the discriminant Q = 6% + (4/9)n® of Eq. (4) vanishes, having a positive value upstream, and
a negative value downstream. Thus, formal continuation of solution (2) into the region with
Q < 0 leads to three-valued results in correspondence with the roots of Eq. (4):

fy = 2~ 08 (B/3), fure = —2(—n)/% cos (B/3 + n/3), cos f = (3/2)0(—n)=3",

However, analytical continuation of the solution through AD,; yields only the root f,, while
continuation through AD yields the root f,. It should also be noted that these continuations
do not have limiting curves, i.e., they allow one-to-one transition to the physical coordi-
nates x, vy.

If the profile is to be closed in the physical plane, it is necessary that the end points
of the contour continuations in the hodograph plane correspond to the same point in the
physical plane. With an allowance for (17), the parametric equation of'the profile in the
physical plane assumes the following form:

¥y = (¢ + 16,1 — 3-1) + 2/(2f — 5)/5], (18)
z = (x -+ D)Y3[3( — 1) — 2b,f].

Let us determine the coordinates of the profile's stern point. The conditions x(f,) = x(f,)
and y(fy) = y(f2) must be satisfied at this point. The latter relationships constitute a
system of nonlinear algebraic equations with the unknowns f, and f,, which can be transformed
to obtain

(fz - fl)r(-Sh - bl) =0, h= f1 -+ fo
g*+ (61 —5) g —21* 8k —5) =0, g=/i+ f3,

whence

g=5—8h* o g=2h% (19)
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Since f, # f» at the stern point, we find h = b;/3. Then, we have from the first of Egs.
(19)

fra=b/3+v, v=V(5/2)[1— (298],

The second equation in (19) does not have real roots. Thus, for the coordinates x, y of the
stern point H, we obtain

2 =— (e + D (3 + b1/3), yu=(x+ )38 [15/4— (20)
— (7/3) by + (1114/81) b].

In the hodograph plane, the point H corresponds to the two points H; and H, with the coordi-
nates

0y, = 3_1f1,2 (3 - 2f%.2), Ma=1— ff,z-

The points HY, H2, H,, and H, for the cases b, = 0; —0.1 are plotted in Fig. 1. In
approaching the stern point along the upper and lower sides of the profile, the corresponding
velocity vectors have vertical components in opposition to each other, which leads to the
development of tail .shock waves, which, however, do not affect the flow along the profile
boundary. Figures 2 and 3 show the profiles in the physical plane for the cases by = 0; 0.1,
the sonic lines CA, CiA (n = 0), and the limiting curves DA, D;A (6 + (2/3)(—)%/? = 0), which
were plotted on the basis of the relationships [4] y = ¢ and x = (% + 1)*/%. 1In the case
of b, = 0, the solution obtained describes the flow around a symmetric profile (16). As b,
varies, the profile is deformed. -For ]b1!$§ 0.1, the forepart (z40% of the length) remains
virtually unchanged with the exception of a small area around the leading point (27 of the
length). The shape of the afterbody of the profile (*60% of the lemgth) remains virtually
unchanged, however; it rotates through a certain angle o relative to the direction of the
oncoming flow. For b, = —0.1, we have a = 6 deg. For practical purposes, the overall area
of the profile remains unchanged. Let us find the trajectory of the stern point in a coordi-
nate system bound to the forepart of the profile. The coordinates of the leading point B are
obtained for £ = b,/3 by means of relationships (18):

25 =—(+ 1) (3 +83/3), ys=0.
Thus, the displacement Axp of the nose point with variation in b, is determined by the ex—

pression Axp = b3/3. Then, by shifting the origin of the X, y coordinate system AxB, we
obtain the following expression for the coordinate x of the stern point H:

zy = (% + 1) [9/2 + (5/3) 2], : (21)

Here, the.coordinate origin coincides with the projection of the profile's sonic point on
the axis for by = 0. By writing the equation of motion of the stern point in the form
yz + (x — x0)? = R®, we obtain on the basis of (21) and the second relationship in (20)

xy = (9/32) (n + 1)1/, R =R, + O (b}), R,=(135/32)(x + 1)1/3,
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The values of %o and Ro determine the circle tangent to the trajectory of the stern point.

Let us determine the aerodynamic characteristics of the profile. As is known [4], the
pressure reaction Cp at a point of the profile is determined by the expression ¢, = 2(n = 1)~1/3q ,

Figure 4 shows the distribution of c%—values along the profile chord for the upper and lower

sides for b; = 0.1 in comparison with the linear distribution cp = —(2/3)(»n + l)—2/3x in the
case of a symmetric profile and b; = 0. VUsing the expressions

cy = ! (ﬁ cpd, €p=— [ q epdy, on = i Cr (x — ;) epde,
L L L
we calculate the coefficient of lift cy, drag cx, and moment cM relative to the point x = x,,

y = 0. Here, 7 is the length of the profile chord: I = xy§ — xXp, and L is the profile
boundary. After performing the calculations, we obtain

v =NV + )75 [1— 9 B =VT0 (x + )™ 4+ 0 (03),
cx = (8/21) V10(x + 1)-3 for b, = 0,
ex = (4/3)* 0.04 (¢ + 1) b, [2,v% + 3 (e + )3 (v — 3v%/5 + B2/9)].

We now find the center of pressure G, i.e., the point at which the 1lift acts. For this, we
put ¢y = 0, whence

z, = 3 (% + D [(B/5)v5 — v — B1/9] = 1.5 (% + 1) + O ().

In conclusion, it should be noted that all the above calculations have been performed for a
profile with the relative thickness 7, = (8/25)V 1.5 ~ 0.39, x = 1.4 . In order to generalize these
results and extend them to profiles with an arbitrary relative thickness T, all the aero-
dynamic coefficients must be additionally multiplied by (t/to)2/® on the basis of the aero-
dynamic similarity law for transonic gas flow. Moreover, the law of transonic stabilization
makes it possible to extend the above results to cases of high subsonic velocity of the on-
coming gas flow.

The authors are grateful to S. V. Fal'kovich for the useful discussion of the results.
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